
JAVA
introduction

• Types
• Variables and Constants
• Primitive and Reference types
• Casting
• Numbers, Strings and Arrays
• Read Input

Primitive types
simple values

• Why we use L after the long
number? By default java assumes
3123456789 to be an integer so we
have to add the suffix L to
represent the number as a long

• When we use the decimal point
java assumes it is a double, incase
of a float we have to use the suffix
F to represent a float number.

Reference types
complex objects

• In other words, a variable of
class type is called reference
data type. It contains the
address (or reference) of
dynamically created objects.

• Example
Demo d1 = new Demo("Atlanta");
//creating a reference of Demo class

• First we declare a primitive type
• (int age=30;)

• Then we Declare and Initialize a
reference type

• Type Date and see what happens
• It suggests classes with the name

Date in different packages
• To use a class from a different

package you have to import it
• We use new to allocate memory and

repeat the name of our class
• An object is an instance of a class

• A class has members that can be
accessed by dot operator

• Can we use dot operator in
primitive type (age.???)

Differences

• We have to different variables x
and y, in different memory
locations, they are completely
independent

• If we change the value of x, y
won’t be affected

Memory allocation in reference types

• It allocates memory for
Point(1,1), assume the place is
100

• Then it allocates a separate part of
the memory and attach this label
to that memory location point1
holds this

• point2=point1, but point1 is the
address of Point(1,1) not the
actual value

• If you update this Point object
through either of these variables
the changes will be visible to the
other variable

String
reference type

• Although String is a reference type,
we use a short way to create them by
using the notation of primitive type

• We can combine strings by using the
“+” operator

• We can use the dot operator
• In Java strings are immutable, we

cannot change them, so any method
that modifies a string will always
return a new string object.

Escape sequences

• \t -> It gives a tab between
two words.

• The escape sequence \b is a
backspace character

• // This \n escape sequence
is for a new line.

• This \" escape sequence is
for printing a double
quotation mark on the text
string

System.out.println("Good Morning \"Geeks!\" How are you all? ");

Good Morning "Geeks!" How are you
all?

Arrays
reference types

Arrays

• Are used to store a list of items
• We specify the type of the items

• Example for a list of integers we
will write int[] arrayname = ???

• Arrays are reference types so we
use new int [size_of_array]

• Using index we can access
individual items in the array

• numbers[0]=2;
• numbers[1]=3;

• In java indexing starts at 0

How to print an array

• Assume the following code • We get a weird string

• When we print an array java
returns a string which is
calculated based on the address
of this object

• We will use Array Class

Arrays Class

• We have a class in java called
Arrays, defined in java.util
package

• We call the method
Arrays.toString(primitive/referen
ce type) this will return the
string representation of the
array

• The first two items have been
initialized and the three others
are set to zero by default.

• If we had a Boolean array by default
all items are set to false

New way for initialization of array

• If we already know the items of
the array we can write

• int [] numbers={2, 3 ,5, 1, 4}
• numbers.length returns the size of

the array

• An array has a fixed size and
cannot be changed

Multi-dimensional Arrays

• To store a matrix we use a two
dimensional array

• A three dimensional array to store
data for a cube

• The
System.out.println(Arrays.toString(numbers))

Will return a weird string

We have to use the
Arrays.deepToString(numbers) to print the items
of the array

• Create an array of int with 2
rows and 3 columns

• Each row is an array itself because
it’s a list of items

• int [][] numbers={{1,2,3},{4,5,6}}

Constant

• There are cases when we want
to initialize a variable with a
value and this value shouldn’t
change.

• We have to write the word final
in front of a specific type

• final float PI=3.14F

Arithmetic expressions

int x = 5;
System.out.println("x = " + x);
x += 6;
System.out.println("After x += 6, x = " + x);
x -= 7;
System.out.println("After x -= 7, x = " + x);
x *= 10;
System.out.println("After x *= 10, x = " + x);
x /= 10;
System.out.println("After x /= 5, x = " + x);
x %= 2;
System.out.println("After x %= 2, x = " + x);

x= 5

After x += 6, x = 11

After x -= 7, x = 4

After x *= 10, x = 40

After x /= 5, x= 4

After x %= 2, x = 0

Casting
type conversion

Casting

• Automatic Casting
short x=1;
int y=x+2;

The result is y=3, can we add short
with int?
Short x is first converted to an integer (a
data type that is bigger) and then added to
2
byte , short , int, long, float, double
double x=1.1;
double y=x+2;//2 is automatically converted to a
double (2.0)

• Explicit Casting
double x=1.1;
int y=x+2;//if we don’t care about the
digits after the decimal point

int y=(int)x +2// we explicitly cast the x to
an integer
It can happen only in compatible types,
numbers you cannot convert a string to an
integer with casting.

In such a case you have to use a wrapper
class Integer.parseInt(x)…

Convert String to Int

String x=“1”;
int y=Integer.parseInt(x)+2;

Math class

• Math.round(float/double)
returns an int

• int y=Math.round(1.1F)

• Math.ceil(float/double) returns a
double

• int y=(int)Math.round(1.1F)

• Math.max(int a, int b)
• Math.random() // value between 0

and 1

• If we want a random int number
0, 100 then we can write

• (int) (Math.random()*100)

Reading Input

Scanner Class

• We create an object scanner and
we specify from where we are
going to read it from, a file, the
terminal window or what. The
Scanner class is found in the
java.util package.

//reading from the terminal
Scanner scanner=new Scanner(System.in)

DescriptionMethod

Reads a boolean value from
the user

nextBoolean()

Reads a byte value from the
user

nextByte()

Reads a double value from
the user

nextDouble()

Reads a float value from the
user

nextFloat()

Reads a int value from the
user

nextInt()

Reads a String value from the
user

nextLine()

Reads a long value from the
user

nextLong()

Reads a short value from the
user

nextShort()

Formatting Numbers

NumberFormat Class

NumberFormat helps you to format and parse numbers for any locale.
• Example:

• Currency :You want to use the $ sign in front of price
• Percent : you want to write 10% instead of 0.1

We Import java.text.NumberFormat
1. NumberFormat currency=NumberFormat.getCurrencyInstance() ;//we don’t use new here because NumberFormat is an abstract

class
String result=currency.format(1234567.891);
System.out.println(result); $1,234,567.89

2. NumberFormat percent=NumberFormat.getPercentInstance() ;//we don’t use new here because NumberFormat is an abstract class
String result= percent.format(0.1);
System.out.println(result); 10%

Mortgage Calculator

Calculating Mortgage Payments

• r: is your monthly interest rate calculated by dividing your annual
interest rate by 12

• n: number of payments
•

• Mortage
೙

೙

• r: είναι το μηνιαίο επιτόκιο που υπολογίζεται διαιρώντας το ετήσιο
επιτόκιο με το 12

• n: αριθμός πληρωμών
• p: ποσό δανείου
• M μηνιαία δόση

import java.util.Scanner;

import java.text.NumberFormat;

class MortageCalulator {

public static void main(String[] args) {

final byte MONTHS_IN_YEAR=12;

final byte PERCENT=100;

Scanner scanner=new Scanner(System.in);

System.out.print("Principle:");

int principle=scanner.nextInt();

System.out.print("Annual interest rate (epitokio):");

float interestRate=scanner.nextFloat();

float monthlyInterestRate=interestRate/PERCENT/MONTHS_IN_YEAR;

System.out.print("Number of years:");

byte years=scanner.nextByte();

int numberOfPayments=years*MONTHS_IN_YEAR;

double mortage=principle*monthlyInterestRate*
Math.pow(1+monthlyInterestRate,numberOfPayments)/(Math.pow(1+monthlyInterestRate,numberOfPayments)-1);

System.out.println("Mortage: "+mortage);

String mortageFormatted=NumberFormat.getCurrencyInstance().format(mortage);

System.out.println("Mortage: "+mortageFormatted);

}

}

result

Principle:100,000
Annual interest rate (epitokio):3
Number of years:20
Mortage: 554.5883416606952
Mortage: $554.59

