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ABSTRACT 
Recursion is a central concept in computer science, yet it is a very 
difficult concept for beginners to learn. In this paper we focus on 
a specific aspect of comprehending recursion - the conception of 
the base case as an integral component of a recursive algorithm. 
We found that students have difficulties in identifying base cases: 
they handle redundant base cases; ignore boundary values and 
degenerated cases; avoid out-of-range values; and may even not 
define any base cases when formulating recursive algorithms. We 
also found that students have difficulties in evaluating recursive 
algorithms that deal with imperceptible base cases. We suggest 
that teachers should make a special effort to discuss different 
aspects of the base case concept. Emphasis should be put on both 
declarative and procedural aspects of categorizing and handling 
base cases as part of recursion formulation.  

Categories and Subject Descriptors 
F.3.3 [Logic and Meanings of Programs]: Studies of Program 
Constructs – program and recursion schemes. 

General Terms 
Algorithms. 

Keywords 
Recursion formulation, recursion evaluation, base case. 

1. INTRODUCTION 
Recursion is a central concept in computer science and is 
considered a powerful and useful problem-solving tool. As such, 
it is taught in almost every introductory course in computer 
science. Research studies have concluded that the concept of 
recursion is difficult to learn and comprehend.  Moreover, 
students have difficulties in applying recursion in their problem-
solving activities [1,6,7,9]. Comprehending the concept of 
recursion, and its use to solve problems, is expressed in the ability 
to evaluate and formulate recursive algorithms. Kahney [6] tested 

the hypothesis that novice programmers and experts differ in 
terms of their mental models of recursion as a process. He showed 
that experts usually possess a “copies model” of recursion, 
whereas novices usually possess a “loop model”. Kahney and 
Eisendstst [7] found that novices may acquire several mental 
models of recursion besides the “loop model”.  

Various studies have concentrated on enhancing recursion 
evaluation ability by deepening students’ understanding of 
recursion tracing.  Wilcoks and Sanders [11] and Kann et al. [5] 
showed that animation that illustrates the “copies model” can 
enhance recursive function evaluation. George [3] claimed that 
the teaching of recursion may be best facilitated by teaching 
students how to simulate the execution of a recursive algorithm 
using diagrammatic traces. Importantly, he showed that 
diagrammatic traces eventually enhanced students’ ability to 
evaluate embedded recursive algorithms. However, studies that 
concentrated on enhancing recursion formulation abilities 
reported different approaches. For example, Wilcoks and Sanders 
[11] reported that most students who used an animator to learn 
recursion indicated that the animator did not assist them in 
formulating recursive algorithms. Sooriamurthy [9] suggested that 
the key to comprehending recursion is to focus on the functional 
abstraction of recursive functions. He developed a template-based 
approach designed to guide students through the various steps in 
formulating a recursive solution. Similarly, Ginat and Shifroni [4] 
observed that the emphasis on the declarative approach for 
teaching recursion, and the emphasis on the abstract level of 
problem decomposition considerably improved formulating 
recursive programs.  

In this paper we focused on a specific aspect of comprehending 
recursion - the role of base cases in recursion formulation.  

There are two aspects of base cases. The first is based on a 
declarative, abstract approach that treats base cases as the smallest 
instances (in terms of problem size) of the problem for which we 
know the answer immediately, without any effort. It may be the 
smallest concrete entity, a boundary value, or a degenerated case. 
It also presents the “smallest” possible input of the problem. The 
second aspect is based on the procedural approach, and refers to 
the base case as a stopping condition. In this sense, it represents 
the end of decomposing the problem to smaller similar problems. 
In order to get a comprehensive view of the role of base cases in 
recursion formulation, one should adopt both the declarative and 
the procedural approaches.  
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In this paper we describe student difficulties in identifying and 
handling base cases, and their influence on the properties of 
recursive algorithms. Finally, we present suggests for instruction. 

2. OUR STUDY  
The main goal of our study was to evaluate student conceptions of 
the base case as an integral component of a recursive solution. We 
tried to reveal students’ difficulties in identifying and handling 
base cases in recursion formulation and evaluation. The research 
population consisted of pre-college beginners who learned 
recursion at an introductory level, and advanced college students, 
who learned recursive manipulation of compound data structures 
and abstract data types.  

Our study was carried out in two stages. The first stage was 
designed to collect and analyze recursive algorithms that students 
formulated to solve seven standard problems (presented in 3.1). 
Besides identifying the wrong solutions, we were especially 
interested in “odd” though correct solutions that might have 
indicated alternative student conceptions regarding the role of the 
base case(s) in recursion formulation. The algorithms were 
collected through interviews with expert computer science 
teachers, and by reading students’ notes.  

The second stage of the research included an analysis of student 
recursion evaluation. The research subjects consisted of 42 
beginners (2 classes) and 74 advanced students (3 classes), none 
of whom participated in the first stage. We prepared a diagnostic 
questionnaire of 6 questions. Each question included a description 
of a problem, and two recursive solutions that differed because of 
the identification of the problem’s base case(s): a “school 
solution”, and a wrong solution, or a correct yet complex solution. 
The problems and the solutions were chosen from the collection 
of algorithms obtained during the first stage of the study (P1-P6, 
see 3.1). Students were asked to assess the correctness, 
readability, and generality of each solution, and to indicate what 
solution they preferred, and to justify their views. After checking 
the data, we interviewed students on a personal basis, to get an in-
depth view of their conceptions.   

3.  RESULTS  
3.1  Student Recursion Formulation 
In this subsection we present examples of students’ common 
solutions of seven standard problems. Besides the “school 
solutions” we present examples of incorrect and overcomplicated 
algorithms that were formulated due to an unsuitable choice of 
base case. The examples are gradually presented, starting with 
simple problems about natural numbers, and proceed to advanced 
problems with compound data types. 
P0. Factorial: Students were asked to formulate a recursive 
algorithm for computing a factorial according to the following 
definition: “Factorial of zero is 1. Factorial of N (N>0) is the 
product of all the natural numbers between 1 to N”. Here we 
present four common solutions: Solution S0.a has only one base 
case (the case of N=0), and is the simplest correct solution of the 
problem. Although solution S0.b is correct, it includes a 
redundant base case (the case of N=1). Students were comfortable 
with S0.b because they preferred to isolate the case when N=0 
from the other cases, believing, as one student put it, that “the 
additional base case N=1 is essential to prevent multiplying by 

zero”. Solution S0.c is incorrect because it ignores the case of 
N=0. Moreover, solution S0.d ignores both cases of N=0 and 
N=1, and is based on the underlying assumption that “the 
computation automatically terminates, because N is a natural 
number”. 

   Solution S0.a Solution S0.b 
Factorial(N) 
    if N=0 then   return 1 
    else return  Factorial(N-1)*N 

 Factorial(N) 
     if N=0 then  return 1 
      else 
          if N=1 then   return 1 
          else  return Factorial(N-1)*N 

  Solution S0.c Solution S0.d 
Factorial(N) 
    if N=1 then   return 1 
    else return   Factorial(N-1)*N 

 Factorial(N) 
     return Factorial(N-1)*N 

P1. Sum of digits of a natural number: The presented solutions 
are correct and differ only in their base cases. Solution S1.a has 
the base case of Num=0, and solution S1.b has the base case of 
one-digit number (Num<=9) that obviously includes the case of 
Num=0. Apparently, there is no appreciable difference between 
the algorithms. However, the first algorithm (S1.a) reflects 
students’ abstract thinking: “0 is the smallest natural number, and 
therefore presents the simplest instance of the problem”. Students 
who formulated the second algorithm (S1.b) considered any one-
digit number as the simplest instance of the problem. From a 
procedural point of view, S1.b reflects the students’ strategy of 
“preventing the total destruction of the number as a consequence 
of its decomposition”. 

   Solution S1.a 

Sum_of_Digits(Num) 

    if Num=0  then  return 0 
    else   return Sum_of_Digits(Num div 10) + Num mod 10 
   Solution S1.b 

Sum_of_Digits(Num) 

    if Num <= 9  then  return Num 
    else    return Sum_of_Digits(Num div 10) + Num mod 10 

P2. Is there an odd digit in a non-negative integer number? 
This example demonstrates how the choice of an unsuitable base 
case might cause code duplication. In solution S2.b a conditional 
statement was duplicated to handle the base case.  

   Solution S2.a 

Odd_Digit?(Num) 

    if Num=0  then  return False 
     else 
        if Num mod 2 =1 then   return True 
        else  return   Odd_Digit?(Num div 10) 
   Solution S2.b 
Odd_Digit?(Num) 

    if Num <= 9 then 
        if  Num mod 2 =1 then   return True 
        else   return False 
    else 
        if  Num mod 2 =1 then   return True 
        else   return Odd_Digit?(Num div 10) 
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P3. Is the array ascendant sorted? Similarly to example P2, this 
example illustrates the redundancy of statements, resulting from 
not accepting the simplest instance of a problem to be the base 
case. Solution S3.b reflects the students’ assumption that the 
simplest case that justifies checking if an array is sorted is where 
the array has at least two elements. 

   Solution S3.a 

Is_Sorted?(A, Size) 
    if  Size = 1  then  return True 
     else 
        if A[Size] <= A[Size-1]  then    return False 
         else   return   Is_Sorted?(A, Size-1) 
   Solution S3.b 
Is_Sorted?(A, Size) 
    if  Size = 2  then 
        if A[Size] <= A[Size-1] then  return False 
         else    return True 
     else 
        if A[Size] <= A[Size-1]  then   return False 
         else  
             return   Is_Sorted?(A, Size-1) 

P4. Membership in a list: Students were asked to formulate a 
recursive algorithm for checking whether item X is a member of a 
list L. They were allowed to use the functions first(L) and tail(L) 
that return, respectively the first element in L, the tail-list of L, 
and the function is-empty?(L) that returns True if L is empty, and 
False otherwise.  S4.a is the correct solution for the problem. It 
has two base cases: (a) the case of an empty list. In this case X is 
not a member of L, and consequently the returned value is False; 
and (b) the case where the first element in the list L equals X, and 
is therefore a member of L. In other cases, the membership is 
checked in the list’s tail.  

   Solution S4.a 

Member(X,L) 

           if Is-Empty?(L) then   return False 
            else 
                if X = First(L) then  return True 
                 else   return     Member(X, Tail(X)) 
   Solution S4.b 

Member(X,L) 

           if X = First(L)   return True 
            else   return    Member(X, Tail(X)) 

Solution S4.b has only one base case. Students who formulated 
this solution recognized the base case as the trivial case of 
checking membership in a non empty list: “If the given item X 
equals the first element of the list, then it is a member of the list, 
and then we don’t have to check anymore”. But they ignored the 
case where the membership does not exist. Accordingly, S4.b is 
incorrect because it produces correct answers only in the cases 
where the membership holds.  
P5. How many nodes are in a binary tree? This example clearly 
describes the effect of a wrong choice of a base case on the 
complexity of the entire code. Instead of recognizing that the 
problem has exactly one base case - the case of an empty tree (see 
solution S5.b), students handled four different base cases: an 
empty tree, a tree with a single node, a tree that has a root and a 

left sub-tree only, and a tree that has a root and a right sub-tree 
only (see solution S5.a). Apparently, students did not recognize 
the three last cases as instances of the general case. Consequently, 
they formulated a correct but a complex solution (S5.a) that 
includes a compound nested if statement, and is not easy to read 
and to comprehend.  

   Solution S5.a 

Count(T) 
   if  Is_Empty?(T) then   return  0 
   else 
        if  Is_Empty?(Left_Sub_Tree (T)) and 
                  Is_Empty?(Right_Sub_Tree(T)) then   return 1  
      else  
           if  Is_Empty?(Left_Sub_Tree (T))  then 
               return  1 + Count(Right_Sub_Tree(T))  
           else 
                if  Is_Empty?(Right_Sub_Tree (T))  then 
                       return  1 + Count(Left_Sub_Tree(T))  
                else 
                      return  1 + Count(Left_Sub_Tree(T))  +  
                                        Count(Right_Sub_Tree(T)) 
   Solution S5.b 
Count(T) 
   if  Is_Empty?(T) then  return  0 
   else 
      return  1 + Count(Left_Sub_Tree(T)) + 
                                    Count(Right_Sub_Tree(T)) 

P6. How many different paths of N steps can a knight move on 
the chessboard from one square to another?  This example 
impressively illustrates the results of avoiding the use of out-of-
range values to characterize the base case.  Students who 
formulated solution S6.a “prevented” the knight from going out of 
the chessboard. To do so, they had to check 8 times if the next 
step is “legal” (within the borders of the chessboard). In contrast, 
the students who considered the “out of borders” case as a 
possible base case formulated a much simpler solution (S6.b).   

Solution S6.a 

Chess(X,Y,Xtarget,Ytarget, N) 

 if  N=0 then   
     if  X= Xtarget and Y= Ytarget  then  return  1 
     else   return  0 
 else 
        Sum   ←  0 
        if    X+1 in [1..8] and  Y+2  in [1..8]  then 
          Sum   ←    Sum  + Chess(X+1,Y+2,Xtarget,Ytarget, N-1) 
        if    X-1 in [1..8] and  Y+2  in [1..8]  then 
          Sum   ←    Sum  + Chess(X-1,Y+2,Xtarget,Ytarget, N-1) 
        if    X+1 in [1..8] and  Y-2  in [1..8]  then 
          Sum   ←    Sum  + Chess(X+1,Y-2,Xtarget,Ytarget, N-1) 
        if    X-1 in [1..8] and  Y-2  in [1..8]  then 
          Sum   ←    Sum  + Chess(X-1,Y-2,Xtarget,Ytarget, N-1) 
        if    X+2 in [1..8] and  Y+1  in [1..8]  then 
          Sum   ←    Sum + Chess(X+2,Y+1,Xtarget,Ytarget, N-1) 
        if    X-2 in [1..8] and  Y+1  in [1..8]  then 
           Sum   ←    Sum + Chess(X-2,Y+1,Xtarget,Ytarget, N-1) 
        if    X+2 in [1..8] and  Y-1  in [1..8]  then 
           Sum   ←    Sum + Chess(X+2,Y-1,Xtarget,Ytarget, N-1) 
         if    X-2 in [1..8] and  Y-1  in [1..8]  then 
            Sum   ←    Sum + Chess(X-2,Y-1,Xtarget,Ytarget, N-1)            
return Sum 
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Solution S6.b 

Chess(X,Y,Xtarget,Ytarget, N) 
    if  X or Y are out of borders  then   return  0 
    else  
           if  N=0  then 
                if  X= Xtarget and Y= Ytarget   then   return  1 
               else   return  0 
           else   return    Chess(X+1,Y+2,Xtarget,Ytarget, N-1)   + 
                                 Chess(X-1,Y+2, Xtarget,Ytarget, N-1)   + 
                                 Chess(X+1,Y-2, Xtarget,Ytarget, N-1)   + 
                                 Chess(X-1, Y-2, Xtarget,Ytarget, N-1)   + 
                                 Chess(X+2,Y+1,Xtarget,Ytarget, N-1)   + 
                                 Chess(X-2,Y+1, Xtarget,Ytarget, N-1)   + 
                                 Chess(X+2,Y-1, Xtarget,Ytarget, N-1)   + 
                                 Chess(X-2,Y-1, Xtarget,Ytarget, N-1) 

The examples presented clearly illustrate the implications of the 
choice of base cases on the properties of recursive algorithms. In 
general, the students’ desire for concrete and detailed base cases 
usually extracts a heavy price in terms of formulating compound, 
long, and sometimes incorrect algorithms. Students who accept 
boundary, degenerated, and even out-of-range cases as possible 
base cases, gain the opportunity to formulate compact and elegant 
algorithms.  

3.2 Student Recursion Evaluation 
Here we presented the results of the diagnostic questionnaire. We 
focused on students’ evaluation of the algorithms’ correctness, 
and on their preference of alternative solutions to a given 
problem.  
Preference of algorithms: In order to determine what algorithm 
they preferred, students referred to the following criteria: 
correctness, complexity of code, and the type of the base case(s).  
It seems that students gave the highest priority to the correctness 
of the algorithms. Where students presumed that only one of the 
algorithms was correct they preferred the correct one. The next 
priority was to check the complexity of the code, and finally the 
type of the base case(s). If they presumed that both algorithms 
were correct (or both incorrect), and had very similar code, they 
preferred the algorithm with the concrete base case (S1.a, ~70% 
of both advanced and beginners). In contrast, if they presumed 
that both algorithms were correct (or both incorrect), but differed 
in their code, they preferred the algorithm with a simpler code, 
even though it had a degenerated base case (e.g., S2.b: 69% 
advanced, 60% beginners, vs. S2.a: 26% advanced, 26% 
beginners).  
Beginners and advanced students justified differently their 
preferences. Advanced students usually justified their preference 
in terms of correctness and efficiency considerations, whereas 
beginners referred mostly to readability and code length.  
Correctness: The findings indicated that students had 
misconceptions regarding the concept of correctness. Many 
students indicated that an algorithm was correct even though it did 
not handle every possible legal instance (input) of the problem 
(e.g., S3.a: 76% of advanced, and 40% of beginners, whom 
indicated that the solution was correct). “As long as it works all 
right for every case that it refers to, it is considered correct”. In 
contrast, students indicated that an algorithm was incorrect when 
it handled imperceptible, though relevant base cases (e.g., S1.b: 
4% advanced, 19% beginners).  

4.  DISCUSSION 
4.1 Classification of Student Difficulties 
The examples described here illustrate four types of difficulties in 
determining base cases:  
(a) Ignorance of boundary cases: Students tend to ignore the 
“small instances” of problems. They do not include boundary 
values in the range of the allowed values for the variables that 
describe the problem. Similarly, they do not refer to degenerated 
instances of data structures (e.g., as empty list, empty tree). This 
type of bug is characteristic of the problems beginners have in 
deciding on appropriate boundary conditions in various domains 
[10]. Sometimes boundary cases are hidden in other base cases 
(e.g., S1.b, S2.b). Here, the fact that they are explicitly ignored 
does not spoil the correctness of the solution. However, there are 
cases where the ignorance of the boundary cases yields incorrect 
solutions (e.g., S3.b, S4.b).  
(b) Avoiding the use of out-of-range values: Sometimes, in 
order to simplify and to generalize the treatment of a set of 
possible boundary cases, “getting out of borders” is needed (e.g. 
S6.b). This action is very complicated for students who avoid the 
use of out-of-range values because they consider those values 
illegal. The cost of this avoidance is again expressed in terms of 
code complexity (e.g. S6.a). 
(c) Lack of base cases: Sometimes students absolutely ignore 
base cases, and formulate incorrect recursive algorithms that do 
not include any termination conditions (e.g. S0.d). 
(d) Redundancy of base cases: Redundancy of base cases occurs 
whenever, besides the “smallest instances” of the problem, 
additional cases are identified as base cases (e.g. S5.a). This 
results in formulating an algorithm that is much more complex 
than an algorithm that handles only the simplest case (e.g. S5.b)  

4.2 Possible Explanations 
Spohrer and Soloway [10] found that “boundary bug probably is 
not a result of any misunderstanding of language constructs, and 
appears to be symptomatic of a more general problem when they 
try to categorize and handle boundary points”. Here we suggest 
some possible explanations for student difficulties with base 
cases. Our study supports the first explanation, and the rest should 
be tested in another study.   
(a) Concrete vs. the abstract problem-solving approach: 
Students that use an abstract approach to analyze problems mostly 
refer to the recursive structure of the data that should be 
manipulated and may easily recognize boundary and degenerated 
cases of that structure. However, they might ignore the procedural 
aspects of the recursive process, and therefore avoid essential 
stopping conditions. In contrast, students who have a concrete-
based style of problem solving, perform the step-by-step analysis 
trace of a recursive process, and merely refer to case bases as 
stopping conditions. 
(b) Mistaken use of problem-solving methods: Students may 
wrongly use the bottom-up problem-solving approach. They start 
to analyze the problem by testing simple cases, and gradually 
proceed to test more general cases. With recursion formulation, 
students eventually have to split the problem space into base 
case(s), and the rest to general cases. Students who have 
difficulties in making that distinction, usually use redundant base 
cases.   
(c) The influence of concrete conceptual models: Teachers often 
use concrete conceptual models, such as the “Russian Dolls” 
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model to teach recursion. Although concrete conceptual models 
may help novice programmers to learn recursion [2,12], they 
might also cause some misconceptions. For example, if the 
Russian Doll contains a most inner doll that is not decomposable, 
it might mean that the base case should always be the smallest 
concrete case of the problem. 
(d) Transfer from other programming paradigms: Students who 
are acquainted with different programming paradigms may 
transfer problem-solving techniques from one programming 
environment to another. We found that students who experienced 
list processing in Prolog tended to ignore boundary cases that 
control the termination of recursive computation. This can be 
explained by the characteristics of the Prolog language. The 
Prolog computational mechanism returns “no” in case of a failure 
and “yes” in case of a success. It enables the programmer to 
concentrate on the declarative and abstract aspects of problem 
solving, and liberates him from dealing with the procedural details 
of the computational process. Therefore, the programmer only has 
to formulate the conditions for success, and does not have to 
bother about the case of failure. We found a substantial support 
for this hypothesis in students’ evaluations of solution S4.a, which 
is an example of an incorrect attempt to rewrite a declarative 
Prolog definition of the membership in terms of a procedural 
algorithm. The percentage of students who considered S4.a as a 
correct solution, and had experienced in Prolog programming 
(40%) was significantly higher that the percentage of the students 
who learned only a procedural programming language (23%) 
(McNemar’s  test: chi-square=37, p<0.001).   
(e) Transfer from programming constrains: Teachers often warn 
students not to get out of arrays index range. This may prevent 
students from “getting out of borders” when needed (e.g. S6.a). 

5.   CONCLUDING REMARKS 
In this paper we described students’ difficulties with recursion 
regarding base cases. We demonstrated how identifying and 
handling of base cases in recursion formulation affects the 
correctness, readability, and code complexity of recursive 
algorithms.  
We would like to conclude by suggesting some didactic 
recommendations for overcoming student difficulties: 
*  Emphasis on the declarative and abstract aspects of recursion 
may help eliminate students’ difficulties with recursion [4,9]. We 
suggest that teachers make a special effort to discuss different 
facets of the base case concept. Emphasis should be placed on 
both declarative and procedural aspects of categorizing and 
handling base cases as part of recursion formulation. Base cases 
should be treated as the smallest instances of the problem’s legal 
input, and not merely as supporting stopping conditions [8]. 
*  Teachers should be very cautious in adapting or designing 
concrete models [12]. For example, when using the Russian Dolls 
model, the teacher should use a structure of a Russian doll that 
contains a most inner decomposable doll that does not contain 
another. This structure illustrates the possibility of null boundary 
values. 
*  Teachers may help eliminate bugs by making students explicitly 
aware of the problems that they may come encounter. Diagnostic 
questionnaires like the one presented here may be used as a 

learning class activity, and as a basis for a class debate about the 
classification and handling of base cases. 
*  Students who learn different programming paradigms should be 
guided to use self-control strategies to avoid misleading transfer 
from one paradigm to another.  
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