
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220808380

The case of base cases: Why are they so difficult to recognize? Student

difficulties with recursion

Conference Paper in ACM SIGCSE Bulletin · September 2002

DOI: 10.1145/637610.544441 · Source: DBLP

CITATIONS

30
READS

564

2 authors, including:

Bruria Haberman

Holon Institute of Technology

79 PUBLICATIONS 581 CITATIONS

SEE PROFILE

All content following this page was uploaded by Bruria Haberman on 29 October 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220808380_The_case_of_base_cases_Why_are_they_so_difficult_to_recognize_Student_difficulties_with_recursion?enrichId=rgreq-85594969e2466d0ba03efcca5506ede4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDgwODM4MDtBUzoyODk4ODEyOTQxNjM5ODFAMTQ0NjEyNDQ5NDk2OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220808380_The_case_of_base_cases_Why_are_they_so_difficult_to_recognize_Student_difficulties_with_recursion?enrichId=rgreq-85594969e2466d0ba03efcca5506ede4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDgwODM4MDtBUzoyODk4ODEyOTQxNjM5ODFAMTQ0NjEyNDQ5NDk2OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-85594969e2466d0ba03efcca5506ede4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDgwODM4MDtBUzoyODk4ODEyOTQxNjM5ODFAMTQ0NjEyNDQ5NDk2OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bruria-Haberman-2?enrichId=rgreq-85594969e2466d0ba03efcca5506ede4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDgwODM4MDtBUzoyODk4ODEyOTQxNjM5ODFAMTQ0NjEyNDQ5NDk2OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bruria-Haberman-2?enrichId=rgreq-85594969e2466d0ba03efcca5506ede4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDgwODM4MDtBUzoyODk4ODEyOTQxNjM5ODFAMTQ0NjEyNDQ5NDk2OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Holon-Institute-of-Technology?enrichId=rgreq-85594969e2466d0ba03efcca5506ede4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDgwODM4MDtBUzoyODk4ODEyOTQxNjM5ODFAMTQ0NjEyNDQ5NDk2OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bruria-Haberman-2?enrichId=rgreq-85594969e2466d0ba03efcca5506ede4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDgwODM4MDtBUzoyODk4ODEyOTQxNjM5ODFAMTQ0NjEyNDQ5NDk2OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bruria-Haberman-2?enrichId=rgreq-85594969e2466d0ba03efcca5506ede4-XXX&enrichSource=Y292ZXJQYWdlOzIyMDgwODM4MDtBUzoyODk4ODEyOTQxNjM5ODFAMTQ0NjEyNDQ5NDk2OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

The Case of Base Cases: Why are They so Difficult
to Recognize? Student Difficulties with Recursion

Bruria Haberman
Department of Computer Science

Holon Academic Institute of Technology,
and Department of Science Teaching

Weizmann Institute of Science, Rehovot, Israel

bruria.haberman@weizmann.ac.il

Haim Averbuch
Department of Computer Science

The Open University
Tel Aviv, Israel

averbuch_haim@hotmail.com

ABSTRACT
Recursion is a central concept in computer science, yet it is a very
difficult concept for beginners to learn. In this paper we focus on
a specific aspect of comprehending recursion - the conception of
the base case as an integral component of a recursive algorithm.
We found that students have difficulties in identifying base cases:
they handle redundant base cases; ignore boundary values and
degenerated cases; avoid out-of-range values; and may even not
define any base cases when formulating recursive algorithms. We
also found that students have difficulties in evaluating recursive
algorithms that deal with imperceptible base cases. We suggest
that teachers should make a special effort to discuss different
aspects of the base case concept. Emphasis should be put on both
declarative and procedural aspects of categorizing and handling
base cases as part of recursion formulation.

Categories and Subject Descriptors
F.3.3 [Logic and Meanings of Programs]: Studies of Program
Constructs – program and recursion schemes.

General Terms
Algorithms.

Keywords
Recursion formulation, recursion evaluation, base case.

1. INTRODUCTION
Recursion is a central concept in computer science and is
considered a powerful and useful problem-solving tool. As such,
it is taught in almost every introductory course in computer
science. Research studies have concluded that the concept of
recursion is difficult to learn and comprehend. Moreover,
students have difficulties in applying recursion in their problem-
solving activities [1,6,7,9]. Comprehending the concept of
recursion, and its use to solve problems, is expressed in the ability
to evaluate and formulate recursive algorithms. Kahney [6] tested

the hypothesis that novice programmers and experts differ in
terms of their mental models of recursion as a process. He showed
that experts usually possess a “copies model” of recursion,
whereas novices usually possess a “loop model”. Kahney and
Eisendstst [7] found that novices may acquire several mental
models of recursion besides the “loop model”.

Various studies have concentrated on enhancing recursion
evaluation ability by deepening students’ understanding of
recursion tracing. Wilcoks and Sanders [11] and Kann et al. [5]
showed that animation that illustrates the “copies model” can
enhance recursive function evaluation. George [3] claimed that
the teaching of recursion may be best facilitated by teaching
students how to simulate the execution of a recursive algorithm
using diagrammatic traces. Importantly, he showed that
diagrammatic traces eventually enhanced students’ ability to
evaluate embedded recursive algorithms. However, studies that
concentrated on enhancing recursion formulation abilities
reported different approaches. For example, Wilcoks and Sanders
[11] reported that most students who used an animator to learn
recursion indicated that the animator did not assist them in
formulating recursive algorithms. Sooriamurthy [9] suggested that
the key to comprehending recursion is to focus on the functional
abstraction of recursive functions. He developed a template-based
approach designed to guide students through the various steps in
formulating a recursive solution. Similarly, Ginat and Shifroni [4]
observed that the emphasis on the declarative approach for
teaching recursion, and the emphasis on the abstract level of
problem decomposition considerably improved formulating
recursive programs.

In this paper we focused on a specific aspect of comprehending
recursion - the role of base cases in recursion formulation.

There are two aspects of base cases. The first is based on a
declarative, abstract approach that treats base cases as the smallest
instances (in terms of problem size) of the problem for which we
know the answer immediately, without any effort. It may be the
smallest concrete entity, a boundary value, or a degenerated case.
It also presents the “smallest” possible input of the problem. The
second aspect is based on the procedural approach, and refers to
the base case as a stopping condition. In this sense, it represents
the end of decomposing the problem to smaller similar problems.
In order to get a comprehensive view of the role of base cases in
recursion formulation, one should adopt both the declarative and
the procedural approaches.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
ITiCSE’02, June 24-26, 2002, Aarhus, Denmark.
Copyright 2002 ACM 1-58113-499-1/02/0006…$5.00.

84

In this paper we describe student difficulties in identifying and
handling base cases, and their influence on the properties of
recursive algorithms. Finally, we present suggests for instruction.

2. OUR STUDY
The main goal of our study was to evaluate student conceptions of
the base case as an integral component of a recursive solution. We
tried to reveal students’ difficulties in identifying and handling
base cases in recursion formulation and evaluation. The research
population consisted of pre-college beginners who learned
recursion at an introductory level, and advanced college students,
who learned recursive manipulation of compound data structures
and abstract data types.

Our study was carried out in two stages. The first stage was
designed to collect and analyze recursive algorithms that students
formulated to solve seven standard problems (presented in 3.1).
Besides identifying the wrong solutions, we were especially
interested in “odd” though correct solutions that might have
indicated alternative student conceptions regarding the role of the
base case(s) in recursion formulation. The algorithms were
collected through interviews with expert computer science
teachers, and by reading students’ notes.

The second stage of the research included an analysis of student
recursion evaluation. The research subjects consisted of 42
beginners (2 classes) and 74 advanced students (3 classes), none
of whom participated in the first stage. We prepared a diagnostic
questionnaire of 6 questions. Each question included a description
of a problem, and two recursive solutions that differed because of
the identification of the problem’s base case(s): a “school
solution”, and a wrong solution, or a correct yet complex solution.
The problems and the solutions were chosen from the collection
of algorithms obtained during the first stage of the study (P1-P6,
see 3.1). Students were asked to assess the correctness,
readability, and generality of each solution, and to indicate what
solution they preferred, and to justify their views. After checking
the data, we interviewed students on a personal basis, to get an in-
depth view of their conceptions.

3. RESULTS
3.1 Student Recursion Formulation
In this subsection we present examples of students’ common
solutions of seven standard problems. Besides the “school
solutions” we present examples of incorrect and overcomplicated
algorithms that were formulated due to an unsuitable choice of
base case. The examples are gradually presented, starting with
simple problems about natural numbers, and proceed to advanced
problems with compound data types.
P0. Factorial: Students were asked to formulate a recursive
algorithm for computing a factorial according to the following
definition: “Factorial of zero is 1. Factorial of N (N>0) is the
product of all the natural numbers between 1 to N”. Here we
present four common solutions: Solution S0.a has only one base
case (the case of N=0), and is the simplest correct solution of the
problem. Although solution S0.b is correct, it includes a
redundant base case (the case of N=1). Students were comfortable
with S0.b because they preferred to isolate the case when N=0
from the other cases, believing, as one student put it, that “the
additional base case N=1 is essential to prevent multiplying by

zero”. Solution S0.c is incorrect because it ignores the case of
N=0. Moreover, solution S0.d ignores both cases of N=0 and
N=1, and is based on the underlying assumption that “the
computation automatically terminates, because N is a natural
number”.

 Solution S0.a Solution S0.b
Factorial(N)
 if N=0 then return 1
 else return Factorial(N-1)*N

 Factorial(N)
 if N=0 then return 1
 else
 if N=1 then return 1
 else return Factorial(N-1)*N

 Solution S0.c Solution S0.d
Factorial(N)
 if N=1 then return 1
 else return Factorial(N-1)*N

 Factorial(N)
 return Factorial(N-1)*N

P1. Sum of digits of a natural number: The presented solutions
are correct and differ only in their base cases. Solution S1.a has
the base case of Num=0, and solution S1.b has the base case of
one-digit number (Num<=9) that obviously includes the case of
Num=0. Apparently, there is no appreciable difference between
the algorithms. However, the first algorithm (S1.a) reflects
students’ abstract thinking: “0 is the smallest natural number, and
therefore presents the simplest instance of the problem”. Students
who formulated the second algorithm (S1.b) considered any one-
digit number as the simplest instance of the problem. From a
procedural point of view, S1.b reflects the students’ strategy of
“preventing the total destruction of the number as a consequence
of its decomposition”.

 Solution S1.a

Sum_of_Digits(Num)

 if Num=0 then return 0
 else return Sum_of_Digits(Num div 10) + Num mod 10
 Solution S1.b

Sum_of_Digits(Num)

 if Num <= 9 then return Num
 else return Sum_of_Digits(Num div 10) + Num mod 10

P2. Is there an odd digit in a non-negative integer number?
This example demonstrates how the choice of an unsuitable base
case might cause code duplication. In solution S2.b a conditional
statement was duplicated to handle the base case.

 Solution S2.a

Odd_Digit?(Num)

 if Num=0 then return False
 else
 if Num mod 2 =1 then return True
 else return Odd_Digit?(Num div 10)
 Solution S2.b
Odd_Digit?(Num)

 if Num <= 9 then
 if Num mod 2 =1 then return True
 else return False
 else
 if Num mod 2 =1 then return True
 else return Odd_Digit?(Num div 10)

85

P3. Is the array ascendant sorted? Similarly to example P2, this
example illustrates the redundancy of statements, resulting from
not accepting the simplest instance of a problem to be the base
case. Solution S3.b reflects the students’ assumption that the
simplest case that justifies checking if an array is sorted is where
the array has at least two elements.

 Solution S3.a

Is_Sorted?(A, Size)
 if Size = 1 then return True
 else
 if A[Size] <= A[Size-1] then return False
 else return Is_Sorted?(A, Size-1)
 Solution S3.b
Is_Sorted?(A, Size)
 if Size = 2 then
 if A[Size] <= A[Size-1] then return False
 else return True
 else
 if A[Size] <= A[Size-1] then return False
 else
 return Is_Sorted?(A, Size-1)

P4. Membership in a list: Students were asked to formulate a
recursive algorithm for checking whether item X is a member of a
list L. They were allowed to use the functions first(L) and tail(L)
that return, respectively the first element in L, the tail-list of L,
and the function is-empty?(L) that returns True if L is empty, and
False otherwise. S4.a is the correct solution for the problem. It
has two base cases: (a) the case of an empty list. In this case X is
not a member of L, and consequently the returned value is False;
and (b) the case where the first element in the list L equals X, and
is therefore a member of L. In other cases, the membership is
checked in the list’s tail.

 Solution S4.a

Member(X,L)

 if Is-Empty?(L) then return False
 else
 if X = First(L) then return True
 else return Member(X, Tail(X))
 Solution S4.b

Member(X,L)

 if X = First(L) return True
 else return Member(X, Tail(X))

Solution S4.b has only one base case. Students who formulated
this solution recognized the base case as the trivial case of
checking membership in a non empty list: “If the given item X
equals the first element of the list, then it is a member of the list,
and then we don’t have to check anymore”. But they ignored the
case where the membership does not exist. Accordingly, S4.b is
incorrect because it produces correct answers only in the cases
where the membership holds.
P5. How many nodes are in a binary tree? This example clearly
describes the effect of a wrong choice of a base case on the
complexity of the entire code. Instead of recognizing that the
problem has exactly one base case - the case of an empty tree (see
solution S5.b), students handled four different base cases: an
empty tree, a tree with a single node, a tree that has a root and a

left sub-tree only, and a tree that has a root and a right sub-tree
only (see solution S5.a). Apparently, students did not recognize
the three last cases as instances of the general case. Consequently,
they formulated a correct but a complex solution (S5.a) that
includes a compound nested if statement, and is not easy to read
and to comprehend.

 Solution S5.a

Count(T)
 if Is_Empty?(T) then return 0
 else
 if Is_Empty?(Left_Sub_Tree (T)) and
 Is_Empty?(Right_Sub_Tree(T)) then return 1
 else
 if Is_Empty?(Left_Sub_Tree (T)) then
 return 1 + Count(Right_Sub_Tree(T))
 else
 if Is_Empty?(Right_Sub_Tree (T)) then
 return 1 + Count(Left_Sub_Tree(T))
 else
 return 1 + Count(Left_Sub_Tree(T)) +
 Count(Right_Sub_Tree(T))
 Solution S5.b
Count(T)
 if Is_Empty?(T) then return 0
 else
 return 1 + Count(Left_Sub_Tree(T)) +
 Count(Right_Sub_Tree(T))

P6. How many different paths of N steps can a knight move on
the chessboard from one square to another? This example
impressively illustrates the results of avoiding the use of out-of-
range values to characterize the base case. Students who
formulated solution S6.a “prevented” the knight from going out of
the chessboard. To do so, they had to check 8 times if the next
step is “legal” (within the borders of the chessboard). In contrast,
the students who considered the “out of borders” case as a
possible base case formulated a much simpler solution (S6.b).

Solution S6.a

Chess(X,Y,Xtarget,Ytarget, N)

 if N=0 then
 if X= Xtarget and Y= Ytarget then return 1
 else return 0
 else
 Sum ← 0
 if X+1 in [1..8] and Y+2 in [1..8] then
 Sum ← Sum + Chess(X+1,Y+2,Xtarget,Ytarget, N-1)
 if X-1 in [1..8] and Y+2 in [1..8] then
 Sum ← Sum + Chess(X-1,Y+2,Xtarget,Ytarget, N-1)
 if X+1 in [1..8] and Y-2 in [1..8] then
 Sum ← Sum + Chess(X+1,Y-2,Xtarget,Ytarget, N-1)
 if X-1 in [1..8] and Y-2 in [1..8] then
 Sum ← Sum + Chess(X-1,Y-2,Xtarget,Ytarget, N-1)
 if X+2 in [1..8] and Y+1 in [1..8] then
 Sum ← Sum + Chess(X+2,Y+1,Xtarget,Ytarget, N-1)
 if X-2 in [1..8] and Y+1 in [1..8] then
 Sum ← Sum + Chess(X-2,Y+1,Xtarget,Ytarget, N-1)
 if X+2 in [1..8] and Y-1 in [1..8] then
 Sum ← Sum + Chess(X+2,Y-1,Xtarget,Ytarget, N-1)
 if X-2 in [1..8] and Y-1 in [1..8] then
 Sum ← Sum + Chess(X-2,Y-1,Xtarget,Ytarget, N-1)
return Sum

86

Solution S6.b

Chess(X,Y,Xtarget,Ytarget, N)
 if X or Y are out of borders then return 0
 else
 if N=0 then
 if X= Xtarget and Y= Ytarget then return 1
 else return 0
 else return Chess(X+1,Y+2,Xtarget,Ytarget, N-1) +
 Chess(X-1,Y+2, Xtarget,Ytarget, N-1) +
 Chess(X+1,Y-2, Xtarget,Ytarget, N-1) +
 Chess(X-1, Y-2, Xtarget,Ytarget, N-1) +
 Chess(X+2,Y+1,Xtarget,Ytarget, N-1) +
 Chess(X-2,Y+1, Xtarget,Ytarget, N-1) +
 Chess(X+2,Y-1, Xtarget,Ytarget, N-1) +
 Chess(X-2,Y-1, Xtarget,Ytarget, N-1)

The examples presented clearly illustrate the implications of the
choice of base cases on the properties of recursive algorithms. In
general, the students’ desire for concrete and detailed base cases
usually extracts a heavy price in terms of formulating compound,
long, and sometimes incorrect algorithms. Students who accept
boundary, degenerated, and even out-of-range cases as possible
base cases, gain the opportunity to formulate compact and elegant
algorithms.

3.2 Student Recursion Evaluation
Here we presented the results of the diagnostic questionnaire. We
focused on students’ evaluation of the algorithms’ correctness,
and on their preference of alternative solutions to a given
problem.
Preference of algorithms: In order to determine what algorithm
they preferred, students referred to the following criteria:
correctness, complexity of code, and the type of the base case(s).
It seems that students gave the highest priority to the correctness
of the algorithms. Where students presumed that only one of the
algorithms was correct they preferred the correct one. The next
priority was to check the complexity of the code, and finally the
type of the base case(s). If they presumed that both algorithms
were correct (or both incorrect), and had very similar code, they
preferred the algorithm with the concrete base case (S1.a, ~70%
of both advanced and beginners). In contrast, if they presumed
that both algorithms were correct (or both incorrect), but differed
in their code, they preferred the algorithm with a simpler code,
even though it had a degenerated base case (e.g., S2.b: 69%
advanced, 60% beginners, vs. S2.a: 26% advanced, 26%
beginners).
Beginners and advanced students justified differently their
preferences. Advanced students usually justified their preference
in terms of correctness and efficiency considerations, whereas
beginners referred mostly to readability and code length.
Correctness: The findings indicated that students had
misconceptions regarding the concept of correctness. Many
students indicated that an algorithm was correct even though it did
not handle every possible legal instance (input) of the problem
(e.g., S3.a: 76% of advanced, and 40% of beginners, whom
indicated that the solution was correct). “As long as it works all
right for every case that it refers to, it is considered correct”. In
contrast, students indicated that an algorithm was incorrect when
it handled imperceptible, though relevant base cases (e.g., S1.b:
4% advanced, 19% beginners).

4. DISCUSSION
4.1 Classification of Student Difficulties
The examples described here illustrate four types of difficulties in
determining base cases:
(a) Ignorance of boundary cases: Students tend to ignore the
“small instances” of problems. They do not include boundary
values in the range of the allowed values for the variables that
describe the problem. Similarly, they do not refer to degenerated
instances of data structures (e.g., as empty list, empty tree). This
type of bug is characteristic of the problems beginners have in
deciding on appropriate boundary conditions in various domains
[10]. Sometimes boundary cases are hidden in other base cases
(e.g., S1.b, S2.b). Here, the fact that they are explicitly ignored
does not spoil the correctness of the solution. However, there are
cases where the ignorance of the boundary cases yields incorrect
solutions (e.g., S3.b, S4.b).
(b) Avoiding the use of out-of-range values: Sometimes, in
order to simplify and to generalize the treatment of a set of
possible boundary cases, “getting out of borders” is needed (e.g.
S6.b). This action is very complicated for students who avoid the
use of out-of-range values because they consider those values
illegal. The cost of this avoidance is again expressed in terms of
code complexity (e.g. S6.a).
(c) Lack of base cases: Sometimes students absolutely ignore
base cases, and formulate incorrect recursive algorithms that do
not include any termination conditions (e.g. S0.d).
(d) Redundancy of base cases: Redundancy of base cases occurs
whenever, besides the “smallest instances” of the problem,
additional cases are identified as base cases (e.g. S5.a). This
results in formulating an algorithm that is much more complex
than an algorithm that handles only the simplest case (e.g. S5.b)

4.2 Possible Explanations
Spohrer and Soloway [10] found that “boundary bug probably is
not a result of any misunderstanding of language constructs, and
appears to be symptomatic of a more general problem when they
try to categorize and handle boundary points”. Here we suggest
some possible explanations for student difficulties with base
cases. Our study supports the first explanation, and the rest should
be tested in another study.
(a) Concrete vs. the abstract problem-solving approach:
Students that use an abstract approach to analyze problems mostly
refer to the recursive structure of the data that should be
manipulated and may easily recognize boundary and degenerated
cases of that structure. However, they might ignore the procedural
aspects of the recursive process, and therefore avoid essential
stopping conditions. In contrast, students who have a concrete-
based style of problem solving, perform the step-by-step analysis
trace of a recursive process, and merely refer to case bases as
stopping conditions.
(b) Mistaken use of problem-solving methods: Students may
wrongly use the bottom-up problem-solving approach. They start
to analyze the problem by testing simple cases, and gradually
proceed to test more general cases. With recursion formulation,
students eventually have to split the problem space into base
case(s), and the rest to general cases. Students who have
difficulties in making that distinction, usually use redundant base
cases.
(c) The influence of concrete conceptual models: Teachers often
use concrete conceptual models, such as the “Russian Dolls”

87

model to teach recursion. Although concrete conceptual models
may help novice programmers to learn recursion [2,12], they
might also cause some misconceptions. For example, if the
Russian Doll contains a most inner doll that is not decomposable,
it might mean that the base case should always be the smallest
concrete case of the problem.
(d) Transfer from other programming paradigms: Students who
are acquainted with different programming paradigms may
transfer problem-solving techniques from one programming
environment to another. We found that students who experienced
list processing in Prolog tended to ignore boundary cases that
control the termination of recursive computation. This can be
explained by the characteristics of the Prolog language. The
Prolog computational mechanism returns “no” in case of a failure
and “yes” in case of a success. It enables the programmer to
concentrate on the declarative and abstract aspects of problem
solving, and liberates him from dealing with the procedural details
of the computational process. Therefore, the programmer only has
to formulate the conditions for success, and does not have to
bother about the case of failure. We found a substantial support
for this hypothesis in students’ evaluations of solution S4.a, which
is an example of an incorrect attempt to rewrite a declarative
Prolog definition of the membership in terms of a procedural
algorithm. The percentage of students who considered S4.a as a
correct solution, and had experienced in Prolog programming
(40%) was significantly higher that the percentage of the students
who learned only a procedural programming language (23%)
(McNemar’s test: chi-square=37, p<0.001).
(e) Transfer from programming constrains: Teachers often warn
students not to get out of arrays index range. This may prevent
students from “getting out of borders” when needed (e.g. S6.a).

5. CONCLUDING REMARKS
In this paper we described students’ difficulties with recursion
regarding base cases. We demonstrated how identifying and
handling of base cases in recursion formulation affects the
correctness, readability, and code complexity of recursive
algorithms.
We would like to conclude by suggesting some didactic
recommendations for overcoming student difficulties:
* Emphasis on the declarative and abstract aspects of recursion
may help eliminate students’ difficulties with recursion [4,9]. We
suggest that teachers make a special effort to discuss different
facets of the base case concept. Emphasis should be placed on
both declarative and procedural aspects of categorizing and
handling base cases as part of recursion formulation. Base cases
should be treated as the smallest instances of the problem’s legal
input, and not merely as supporting stopping conditions [8].
* Teachers should be very cautious in adapting or designing
concrete models [12]. For example, when using the Russian Dolls
model, the teacher should use a structure of a Russian doll that
contains a most inner decomposable doll that does not contain
another. This structure illustrates the possibility of null boundary
values.
* Teachers may help eliminate bugs by making students explicitly
aware of the problems that they may come encounter. Diagnostic
questionnaires like the one presented here may be used as a

learning class activity, and as a basis for a class debate about the
classification and handling of base cases.
* Students who learn different programming paradigms should be
guided to use self-control strategies to avoid misleading transfer
from one paradigm to another.

6. REFERENCES
[1] Anderson, J.R., Prirolli, P., and Farrell, R. Learning to

program recursive functions. In The Nature of Expertise.
Chi, M.T., Glaser, R., and Farr, M.J. (eds.). Hillsdale, NJ:
Lawrence Erlbaum Associates, 1988, 151-183.

[2] Ben-Ari, M. Recursion: From drama to program. Journal of
Computer Science Education. 11(3), 1997, 9-12.

[3] George, E.C. Experience with novices: The importance of
graphical representations in supporting mental models. In
Blackwell, A.F. and Bilotta, E. (Eds). Proceedings of the 12th
Workshop of the Psychology of Programming Interest
Group, 2000, 33-44.

[4] Ginat, D. and Shifroni, E. Teaching recursion in a procedural
environment - How much should we emphasize the
computing model? Proceedings of the 30th SIGCSE technical
symposium on computer science education, 1999, 127-131.

[5] Kann, C., Lindenman, R., and Heller, R. Integrating
algorithm animation into a learning environment. Computers
Educ., 28 (4), 223-228, 1997.

[6] Kahney, H. What do novice programmers know about
recursion? Proceedings of the CHI ‘83 Conference on
Human Factors in Computer Systems, 1983, 235-239.

[7] Kahney, H. and Eisenstadt, M. Programmers’ mental models
of their programming tasks: The interaction of real world
knowledge and programming knowledge. Proceedings of the
4th Annual Conference of the Cognitive Science Society,
1982, 143-145.

[8] Segal, J. Empirical studies of functional programming
learners evaluating recursive functions. Instructional Science,
22, 385-411, 1995.

[9] Sooriamurthi, R. Problems in comprehending recursion and
suggested solutions. Proceedings of the 6th Annual SIGCSE
Conference on Innovation and Technology in Computer
Science Education, 2001, 25-28.

[10] Spohrer, J.G., and Soloway, E. Analyzing the high frequency
bugs in novice programs. In Empirical Studies of
Programmers. Soloway E. and Iyengar, S. (eds.). Albex
Publishing Corporation, Norwood, New Jersey, 1986, 230-
251.

[11] Wilcocks, D., and Sanders, I., Animating recursion as an aid
to instruction. Computers Educ. 23(3), 221-226, 1994.

[12] Wu, C.C., Dale, N.B., and Bethel, L.J. Conceptual models
and cognitive learning styles in teaching recursion.
Proceedings of the 29th SIGCSE technical symposium on
computer science education, 1998, 292-296.

88

View publication statsView publication stats

https://www.researchgate.net/publication/220808380

